PP31G-07:
Where East Africa and the Levant Are Climatically Connected: An Alternative View of the Northward Shifts of Either the ITCZ and/or the Indian Summer Monsoon

Wednesday, 17 December 2014: 9:12 AM
Yehouda Enzel, Hebrew University of Jerusalem, Jerusalem, Israel, Yochanan Kushnir, Lamont Doherty Earth Observ, Palisades, NY, United States and Jay Quade, University of Arizona, Tucson, AZ, United States
Abstract:
Lake levels in basins in areas bordering northern Arabian Sea have been used to reconstruct regional paleohydrological patterns through lake-level statuses. For the early-middle Holocene, dramatic increases in regional rainfall have been proposed. These rainfall changes are commonly thought to be associated with an intensified Indian summer monsoon (ISM) and a large northward shift in the latitude of the boreal summer ITCZ over the Indian Ocean; this shift was proposed to reach latitudes as far north as the Levant. However, the ISM currently forces total summer drought not rains, in the Levant and neighboring deserts, including Arabia. The drought is due to large-scale air subsidence forced by the ISM and dries the region except in southernmost Arabia, where topography lifts air and produces orographic rain. This Arabian summer drought is assisted by increased upwelling that limits rainfall inland. How large the actual changes in paleohydrology were in the Arabian Peninsula? If not the ISM, what are the real causes of these changes? We summarize paleohydrologic information from Arabia and revisit the paleolake status of all lacustrine-like deposits and their basins in Arabia. From reinterpretation of these data and sedimentology and fauna, we conclude that these basins were occupied by shallow marsh environments, not lakes. Consequently, the paleohydrologic changes required to support restricted wetland versus lakes were much smaller. These conclusions are supported by the temporal and spatial distribution of other paleoenvironmental indicators such as pollen and speleothems. They indicate that (a) rainfall changes were very small in the heart of and northern Arabia, and (b) that these changes were only at the elevated edges of southwestern, southern, and southeastern Arabian Peninsula, where it rains at present, mainly due to orographic effects on precipitation in the presence of increased moisture supply. We propose that (a) latitudinal and slight inland impact expansion of the North African summer monsoon rains across the Red Sea, and (b) its uplifted air to southwestern Arabia highlands, rather than rains associated with intensification of ISM, increased rains in that region, producing the modest paleowetlands in downstream hyperarid basins.