Evolution and Dynamics of a Fold-Thrust Belt: The Sulaiman Range of Pakistan

Monday, 15 December 2014: 11:35 AM
Kirsty Reynolds, Bullard Laboratories, University of Cambridge, Cambridge, CB3, United Kingdom, Alex Copley, Bullard Laboratories, University of Cambridge, Cambridge, United Kingdom and Ekbal Hussain, University of Leeds, COMET, School of Earth and Environment, Leeds, United Kingdom
Plan-view curvature of geological structures and range-front topography has long been a recognized and debated feature of both ancient and active fold-thrust belts. As part of the largest active mountain range on Earth, much of the body of work surrounding this topic has focused on the Tibetan Plateau. A lack of published data, extremely limited geodetic coverage and difficulty of access mean there have been relatively few studies of the western part of the India-Asia collision zone, where the Himalaya curve to the southwest into the lobate fold-thrust belts of Pakistan. The widest of these, the Sulaiman Range, forms a strongly curved lobe with ~300km across-strike width.

We present observations and models of the Sulaiman Range of western Pakistan that shed new light on the evolution and deformation of fold-thrust belts. Earthquake source inversions show that the seismic deformation in the range is concentrated in the thick pile of sediments overlying the underthrusting lithosphere of the Indian subcontinent. The slip vectors of the earthquakes vary in strike around the margin of the range, in tandem with the shape of the topography, suggesting that gravitational driving forces arising from the topography play an important role in governing the deformation of the region. Numerical models suggest that the active deformation, and extreme plan-view curvature of the range, are governed by the presence of weak sediments in a pre-existing basin on the underthrusting Indian plate. These sediments affect the stress-state in the over-riding mountain range and allow for the rapid propagation of the nose of the range and the development of extreme curvature and laterally-varying surface gradients.