V34B-08:
Seismicity and Deformation of Krafla Volcano, Iceland. Intervals of Low Seismicity Rate during Rapid Inflation Explained By the Kaiser Effect.

Wednesday, 17 December 2014: 5:45 PM
Elias Rafn Heimisson1, Pall Einarsson1, Freysteinn Sigmundsson2 and Bryndis Brandsdottir1, (1)University of Iceland, Reykjavik, Iceland, (2)University of Iceland, Nordic Volcanological Center, Institute of Earth Sciences, Reykjavik, Iceland
Abstract:
The Krafla central volcano in NE-Iceland produced about 20 dike intrusions during a rifting episode 1975-1984. These intrusions were always preceded by inflation of the caldera. Once a dike started propagating rapid deflation was observed. The first deflation event began in December 1975 with a dike traveling laterally from the magma chamber. Leveling measurements revealed subsidence of 2 m close to the deflation center. In February 1976 a stage of inflation began and at the same time the seismicity rate in the caldera rose in good correlation with the inflation. A small intrusion started propagating in late September 1976 which was accompanied by maximum subsidence of about 14 cm. However in the next 3 inflation and deflation cycles the inflation periods were almost aseismic until the inflation level of previous cycle was exceeded. At that point a sharp increase in the caldera earthquake count was observed. This phenomenon was observed until late April 1977 when a fissure eruption occurred inside the caldera. By inverting leveling data from 87 stations for a Mogi source and regarding the volume change of the source as a measure of stress we suggest that this phenomenon can be explained by the Kaiser effect. The Kaiser effect is well known from rock mechanics where under cyclic loading and unloading rocks, and other materials, induce dramatic increase in acoustic emissions when the load exceeds that of previous cycles. Krafla demonstrated the same effect while the external stress field was not significantly changed during the aforementioned 3 inflation/deflation cycles. This condition was disturbed when eruption occurred inside the caldera. The state of stress in the vicinity of the magma chamber was changed and subsequent inflation periods were not accompanied by significant seismicity. These results indicate that the Kaiser effect is an important part of understanding the relationship between deformation and seismicity in active volcanoes. The importance of combining seismic and geodetic observations is stressed since a volcano can rapidly inflate without significant changes in seismicity.