EP34B-07:
Bedrock Channel and Cave Evolution Models Based on Computational Fluid Dynamics

Wednesday, 17 December 2014: 5:30 PM
Matija Perne, Matthew D Covington and Max Cooper, University of Arkansas, Fayetteville, AR, United States
Abstract:
Models of bedrock channel cross-section evolution typically rely on simple approximations of boundary shear stress to calculate erosion rates across the channel. While such models provide a useful tool for gaining general insight into channel dynamics, they also exhibit a narrower range of behaviors than seen in nature and scale experiments. Recent computational advances enable use of computational fluid dynamics (CFD) to relax many of the assumptions used in these simple models by simulating the full 3D flow field and resulting erosion. We have developed a model of bedrock channel evolution at the reach scale, using CFD, that alternates flow simulation steps with channel evolution steps and evolves the channel in time according to shear stresses calculated from the CFD runs.

Caves provide an ideal field setting for studying bedrock channel dynamics, because long records of incision are often preserved in the form of channel widths, meander patterns, and sculpted forms, such as scallops, that indicate flow velocity and direction. However, most existing numerical models of cave formation investigate processes on larger scales, treat conduits as simple shapes, such as cylinders, and deal with the early stages of speleogenesis when sediment transport and erosion mechanisms other than dissolution do not have to be taken into account. Therefore, initial applications of the CFD model focus on the dynamics of cave channels, and particularly on the controls of channel width. While discharge, base level, sediment supply, and the ratio of dissolution to mechanical erosion, are likely to play important roles in determining channel width, we lack a quantitative understanding for the importance of these various factors. Notches in passage walls are thought to result from lateral erosion during periods of increased sediment load when the bed is armored. Modeling is used to check the plausibility of this explanation, and examine whether other mechanisms may also produce notches. Paragenesis is a mode of cave passage formation under full pipe conditions where the floor is armored by sediment and incision proceeds upwards. However, the dynamics of this process are not understood and are also explored using the CFD model.