Rapid Gorge Formation in an Artificially Created Waterfall

Friday, 19 December 2014: 9:15 AM
Loreto Anton1, Anne E Mather2, Martin Stokes2 and Alfonso Munoz Martin3, (1)UNED (Universidad Nacional de Educación a Distancia), Madrid, Spain, (2)Plymouth University, Plymouth, United Kingdom, (3)Complutense University of Madrid, Madrid, Spain
A number of studies have examined rates of gorge formation, nick point retreat, and the controls on those rates via bedrock erodibility, the effectiveness of bedrock erosion mechanisms and the role of hillslope processes. Most findings are based on conceptual / empirical models or long term landscape analysis; but studies of recent quantifiable events are scarce yet highly valuable. Here we present expert eye witness account and quantitative survey of large and rapid fluvial erosion events that occurred over an artificially created waterfall at a spillway mouth. In 6 years a ~270 m long, ~100 m deep and ~100 to 160 m wide canyon was carved, and ~1.58 x106 m3 of granite bedrock was removed from the spillway site. Available flow data indicates that the erosion took place under unremarkable flood discharge conditions. The analysis of historic topographic maps enables the reconstruction of the former topography and successive erosion events, enabling the quantification of bedrock erosion amounts, and rates. Analysis of bedrock erodibility and discontinuity patterns demonstrates that the bedrock is mechanically strong, and that similar rock strength and fracture patterns are found throughout the region. It is apparent that structural pre-conditioning through fracture density and orientation in relation to flow and slope direction is of paramount importance in the gorge development.

The presented example provides an exceptional opportunity for studying the evolution process of a bedrock canyon and to precisely measure the rate of bedrock channel erosion over a six year period. Results illustrate the highly episodic nature of the erosion and highlight several key observations for the adjustability of bedrock rivers. The observations have implications for the efficiency of bedrock erosion and raise important questions about incision rates, driving mechanisms and timescale assumptions’ in models of landscape change.