PP43E-05:
Hydrogen Isotope Biogeochemistry of Plant Biomarkers in Tropical Trees from the Andes to Amazon

Thursday, 18 December 2014: 2:40 PM
Sarah J Feakins1, Camilo Ponton1, A. Joshua West1, Yadvinder Malhi2, Gregory Goldsmith2, Norma Salinas2 and Lisa Patrick Bentley2, (1)University of Southern California, Los Angeles, CA, United States, (2)University of Oxford, School of Geography and the Environment, Oxford, United Kingdom
Abstract:
Plant leaf waxes are well known biomarkers for terrestrial vegetation. Generally, their hydrogen isotopic composition (D/H) records the isotopic composition of precipitation, modulated by leaf water processes and a large biosynthetic fractionation. In addition, the D/H of methoxyl groups on tree wood lignin is an emerging technique thought to record the D/H of source waters, without leaf water complications. Using each of these biomarkers as proxies requires understanding D/H fractionations in plant systems, but few studies have directly studied hydrogen isotope biogeochemistry in tropical plants. An approach that has proven helpful is the paired analysis of plant waters and plant biomarkers: in order that fractionations can be directly computed rather than assumed. This presents logistical challenges in remote tropical forest environments. We report on a unique dataset collected by tree-climbers from 6 well-studied vegetation plots across a 4km elevation transect in the Peruvian Andes and Amazonia. We have measured the D/H of stem water and leaf water, and we compare these to precipitation isotopes and stream waters. The goal of the plant water studies is to understand plant water uptake and stem-leaf water isotopic offsets which can vary due to both transpiration and foliar uptake of water in tropical montane forests. We are in the process of measuring the D/H of plant biomarkers (n-alkanoic acids, n-alkanes and lignin methoxyl) in order to assess how these water isotopic signals are encoded in plant biomarkers. We compare the species-specific modern plant insights to the plant leaf wax n-alkanoic acid D/H that we have recently reported from soils and river sediments from the same region, in order to understand how signals of plant biogeochemistry are integrated into geological sedimentary archives. Progress and open questions in tropical isotope biogeochemistry will be discussed at the meeting.