A53G-3288:
Navy Global Predictions for the Dynamo Time Period

Friday, 19 December 2014
Carolyn A. Reynolds1, James A Ridout2, Maria K. Flatau2, James Chen3, James G Richman4, Tommy G Jensen5 and Jay F Shriver4, (1)Naval Research Lab Monterey, Monterey, CA, United States, (2)Naval Research Laboratory, Monterey, CA, United States, (3)Science Applications International Corporation Washington DC, Washington, DC, United States, (4)Naval Research Lab Stennis Space Center, Stennis Space Center, MS, United States, (5)Naval Research Laboratory, Stennis Space Center, MS, United States
Abstract:
The performance of 30-day simulations of the Navy Global Environmental Model (NAVGEM) is evaluated under several metrics. The time period of interest is the DYNAMO (Dynamics of Madden Julian Oscillation) field experiment period, starting late October 2011. The NAVGEM experiments are run at an effective 37-km resolution with several different SST configurations. The in the first set of experiments, the initial SST analysis, provided by the NCODA (Navy Coupled Ocean Data Assimilation) system, is either held fixed to the initial value (fixed SST) or updated every 6 hours. These forecasts are compared with forecasts in which the SST is updated with 3-h analyses from the Hybrid Coordinate Ocean Model (HYCOM), and forecasts in which NAVGEM is interactively coupled to HYCOM. Experiments are also performed with different physical parameterization options. The extended integrations are verified using observed OLR, TRMM precipitation estimates, and global analyses.

The use of fixed SSTs is clearly sub-optimal. Biases in monthly mean fields are far more pronounced in the simulations where the SST is held fixed as compared to those in simulations where updated SST analyses are used. Biases in the monthly mean fields are further reduced when NAVGEM is coupled to HYCOM. Differences in SST can “migrate” to substantial changes in the time-mean land-surface temperatures, illustrating the substantial impact of SSTs over the full domain. Concerning the simulation of the MJO, some improvement is noted when the system is fully coupled, although the simulations still exhibit deficiencies such as eastward propagation that is too slow, and difficulty propagating over the maritime continent. Simulations that are started every 5 days indicate that the NAVGEM uncoupled system has difficulty predicting MJO initiation, but simulations started when the MJO is active in the Indian Ocean are able to capture eastward propagation characteristics. The coupled NAVGEM-HYCOM system shows ability to capture the initiation of an MJO event 20 days into the forecast.