Determining the Location, Number Density and Temporal Evolution of Streams of Hazardous Near-Earth Objects Using the Magnetic Signatures Produced in Destructive Collisions

Monday, 15 December 2014
Hairong Lai1, Christopher T Russell2, Hanying Wei1, Gian Luca Delzanno3 and Martin G Connors4, (1)University of California Los Angeles, Los Angeles, CA, United States, (2)Univ California, Los Angeles, CA, United States, (3)Los Alamos National Laboratory, Los Alamos, NM, United States, (4)Athabasca University, Athabasca, AB, Canada
Near-Earth objects (NEOs) of tens of meters in diameter are difficult to detect by optical methods from the Earth but they result in the most damage per year. Many of these bodies are produced in non-destructive collisions with larger well-characterized NEOs. After generation, the debris spreads forward and backward in a cocoon around the orbit of the parent body. Thereafter, scattering will occur due to gravitational perturbations when the debris stream passes near a planet even when the parent body has no such close approaches. Therefore “safe” NEOs which have no close encounters to the Earth for thousands of years may be accompanied by potentially hazardous co-orbiting debris.

We have developed a technique to identify co-orbiting debris by detecting the magnetic signature produced when some of the debris suffers destructive collisions with meteoroids, which are numerous and can be as small as tens of centimeters in diameter. Clouds of nanoscale dust/gas particles released in such collisions can interact coherently with the solar wind electromagnetically. The resultant magnetic perturbations are readily identified when they pass spacecraft equipped with magnetometers. We can use such observations to obtain the spatial and size distribution as well as temporal variation of the debris streams.

A test of this technique has been performed and debris streams both leading and trailing asteroid 138175 have been identified. There is a finite spread across the original orbit and most of the co-orbitals were tens of meters in diameter before the disruptive collisions. We estimate that there were tens of thousands of such co-orbiting objects, comprising only 1% of the original mass of the parent asteroid but greatly increasing the impact hazard. A loss of the co-orbitals since 1970s has been inferred from observations with a decay time consistent with that calculated from the existing collisional model [Grün et al., 1985]. Therefore disruptive collisions are the main loss mechanism of the co-orbiting debris associated with 138175.

In summary, our technique helps us to identify which NEOs are accompanied by hazardous debris trails. Although our technique provides only the statistical properties, it indicates where high resolution optical surveys should be obtained in order to identify and track specific hazardous bodies.