Lithologic Control on the Form of Soil Mantled Hillslopes

Wednesday, 17 December 2014: 12:05 PM
Samuel A Johnstone and George E Hilley, Stanford University, Stanford, CA, United States
Slopes on steady-state soil-mantled hillslopes tend to increase downslope in a way that balances local transport capacity with the sediment supplied from progressively larger source areas. Most predictions for the transport of soil depend purely on topographic slope and constants. Thus, soil mantled topography should evolve toward smooth forms in which soils act to buffer these forms from the underlying geologic structure. However, in the Gabilan Mesa, CA, oscillations in the slope of soil-mantled hillslopes mirror oscillations in the underlying stratigraphy. Using field measurements of stratigraphy and soil depths, topographic analysis, and numerical modeling, we demonstrate that variations in rock type can impact the form of soil-mantled hillslopes. Specifically, variations in the properties of underlying rocks may yield different soil thicknesses. Balancing transport rates across these variations in thickness requires slopes to change when soil transport depends on both soil thickness and slope. A compilation of published data on the variation in activity with depth of various transport processes provides the basis for a geomorphic transport law (GTL) that generalizes the depth dependence of various transport processes. While this GTL is explicitly depth dependent, it is also capable of describing situations in which hillslope transport is relatively insensitive to variations in thickness and therefore essentially equivalent to existing formulations. We use dimensional analysis and numerical modeling to demonstrate the conditions under which transport on soil mantled slopes, and consequently topographic forms, may be sensitive to variations in soil thickness and therefore lithology.