SA41B-4068:
A Maximum Likelihood Ensemble Data Assimilation Method Tailored to the Inner Radiation Belt

Thursday, 18 December 2014
Timothy B Guild1, Thomas Paul O\'Brien III2 and Joseph E Mazur1, (1)The Aerospace Corporation, Chantilly, VA, United States, (2)Aerospace Corp, Corpus Christi, TX, United States
Abstract:
The Earth’s radiation belts are composed of energetic protons and electrons whose fluxes span many orders of magnitude, whose distributions are log-normal, and where data-model differences can be large and also log-normal. This physical system thus challenges standard data assimilation methods relying on underlying assumptions of Gaussian distributions of measurements and data-model differences, where innovations to the model are small. We have therefore developed a data assimilation method tailored to these properties of the inner radiation belt, analogous to the ensemble Kalman filter but for the unique cases of non-Gaussian model and measurement errors, and non-linear model and measurement distributions. We apply this method to the inner radiation belt proton populations, using the SIZM inner belt model [Selesnick et al., 2007] and SAMPEX/PET and HEO proton observations to select the most likely ensemble members contributing to the state of the inner belt. We will describe the algorithm, the method of generating ensemble members, our choice of minimizing the difference between instrument counts not phase space densities, and demonstrate the method with our reanalysis of the inner radiation belt throughout solar cycle 23. We will report on progress to continue our assimilation into solar cycle 24 using the Van Allen Probes/RPS observations.