T33B-4656:
The Break-up and Drifting of the Continental Plates in 2D Models of Convecting Mantle

Wednesday, 17 December 2014
Luca Dal Zilio1, Manuele Faccenda1 and Fabio a Capitanio2, (1)University of Padua, Padua, Italy, (2)Monash University, Melbourne, VIC, Australia
Abstract:
Since the early theory of Wegener, the break-up and drift of continents have been controversial and hotly debated topics. To assist the interpretation of the break-up and drift mechanisms and its relation with mantle circulation patterns, we carried out a 2D numerical modelling of the dynamics of these processes. Different regimes of upper plate deformation are studied as consequence of stress coupling with convection patterns. Subduction of the oceanic plate and induced mantle flow propagate basal tractions to the upper plate. This mantle drag forces (FMD) can be subdivided in two types: (1) active mantle drag occurring when the flow drives plate motion (FAD), and (2) passive mantle drag (FPD), when the asthenosphere resists plate motion. The active traction generated by the convective cell is counterbalanced by passive mantle viscous drag away from it and therefore tension is generated within the continental plate. The shear stress profiles indicate that break-up conditions are met where the gradient of the basal shear stress is maximised, however the break-up location varies largely depending on the convection style primarily controlled by slab stagnation on the transition zone, avalanching through or subduction in the lower mantle. We found good correspondence between our models and the evolution of convergent margins on Earth, giving precious insights into the break-up and drifting mechanisms of some continental plates, such as the North and South American plates, Calabria and the Japan Arc.