H33H-0937:
Quantifying the Usefulness of Ensemble-Based Precipitation Forecasts with Respect to Water Use and Yield during a Field Trial

Wednesday, 17 December 2014
Emily Christ1, Peter John Webster1, Guy Collins2 and Seth Byrd2, (1)Georgia Institute of Technology Main Campus, Earth and Atmospheric Sciences, Atlanta, GA, United States, (2)The University of Georgia, College of Agricultural and Environmental Sciences, Tifton, GA, United States
Abstract:
Recent droughts and the continuing water wars between the states of Georgia, Alabama and Florida have made agricultural producers more aware of the importance of managing their irrigation systems more efficiently. Many southeastern states are beginning to consider laws that will require monitoring and regulation of water used for irrigation. Recently, Georgia suspended issuing irrigation permits in some areas of the southwestern portion of the state to try and limit the amount of water being used in irrigation. However, even in southern Georgia, which receives on average between 23 and 33 inches of rain during the growing season, irrigation can significantly impact crop yields. In fact, studies have shown that when fields do not receive rainfall at the most critical stages in the life of cotton, yield for irrigated fields can be up to twice as much as fields for non-irrigated cotton.

This leads to the motivation for this study, which is to produce a forecast tool that will enable producers to make more efficient irrigation management decisions. We will use the ECMWF (European Centre for Medium-Range Weather Forecasts) vars EPS (Ensemble Prediction System) model precipitation forecasts for the grid points included in the 1x 1 lat/lon square surrounding the point of interest. We will then apply q-to-q bias corrections to the forecasts. Once we have applied the bias corrections, we will use the check-book method of irrigation scheduling to determine the probability of receiving the required amount of rainfall for each week of the growing season. These forecasts will be used during a field trial conducted at the CM Stripling Irrigation Research Park in Camilla, Georgia. This research will compare differences in yield and water use among the standard checkbook method of irrigation, which uses no precipitation forecast knowledge, the weather.com forecast, a dry land plot, and the ensemble-based forecasts mentioned above.