A Configuration-Space Equatorial Spread F Structure Model

Monday, 15 December 2014
Charles L Rino1, Charles Salvatore Carrano1 and John Michael Retterer2, (1)Boston College, Institute for Scientific Research, Chesnut Hill, MA, United States, (2)Boston Coll-Scientific Rsrch, Chestnut Hill, MA, United States
Configuration-space models address the intermediate scale ESF structure range from hundreds of kilometers to hundreds of meters. It is well known that ESF structure is comprised of highly-elongated field-aligned striations. Striations are generated by physics-based ESF codes. Moreover, they are visually observable in twilight barium releases and air glow. Configuration-space models are derived from ensembles of field-aligned striations with specified radial profile functions, distributions of scale sizes, and distributions of clustered field-line starting locations. The model is intimately tied to underlying physics. The scale-dependent evolution of a field-aligned local plasma enhancement is a well posed plasma-physics problem. Local striation creation, evolution, and intensity is driven by the convective instability process. Successive bifurcation is often used to describe the Rayleigh-Taylor mechanism.

The model makes no prior assumptions that ensure standard spectral decompositions. Indeed, the model shows that there is no possibility of constructing a consistent three-dimensional structure spectrum. The model does show that in planes intersecting field lines well removed from the meridian plane two-dimensional spectra can be constructed. There is a one-to-one relation between the striation size distribution and the index of the corresponding power-law segments. The profile shape controls the texture of the realizations. A critical number of randomly located striations are required to support a well-defined spectral characterization.

The configuration space model is defined by a much smaller number of random variables than required to generate a realization of a process with specified spectral characteristics. Thus, it is feasible to generate a three-dimensional realization that can be used to simulate ESF and to interpret planned space-time Cubsat measurements. The theory will be reviewed and examples of model applications presented.