EP31B-3528:
Is Equilibrium Floc Size a Function of Concentration?
Wednesday, 17 December 2014
Duc Anh Tran and Kyle Strom, University of Houston, Houston, TX, United States
Abstract:
Flocculation is the process in which cohesive sediments amalgamate to form larger aggregates or flocs. The two factors that strongly influence the flocculation of mud are the turbulent shear rate and the suspended sediment concentration. Increases in turbulent shear rate are known to decrease the time to equilibrium and limit floc size. Increases in concentration are typically thought to decrease the time to equilibrium and increase the final equilibrium floc size. In this laboratory study, the effect of concentration on the growth rate and equilibrium size of flocs is systematically investigated. A camera system and image processing program were used to observe and analyze the evolution of flocs created by of a mixture of 80% kaolinite and 20% montmorillonite clay at six different concentrations (25, 50, 100, 200, 300 and 400 mg/L). Each mixture was first sonicated for 15 minutes before being introduced to a tank of tap water being mixed at an turbulent shear rate of G = 58 s-1. Flocs were then allowed to grow for two hours. During the following hour, a much higher shear rate of G = 1200 s-1 was applied to break the flocs. The shear rate was then reduced back to and maintained at G = 58 s-1 for another six hours. Running the experiments in this way allowed for the observation of floc growth from two different initial particle states at each concentration, resulting in a total of 12 floc growth experiments. The primary conclusions from this set of experiments are: (1) higher suspended sediment concentration is correlated with a higher rate of floc growth, and (2) at equilibrium, the average floc size stabilizes at ≈ 100 µm independent of the initial particle state or the suspended sediment concentration. Therefor, for the sediment mixture tested, the results imply that the effect of concentration on flocculation was restricted to the floc growth rate. This is contrary to what would be predicted using typical mud settling velocity equations.