T33C-4707:
Oceanic Plate Bending Along the Manila Trench

Wednesday, 17 December 2014
Fan Zhang1, Jian Lin1 and Wenhuan Zhan2, (1)Woods Hole Oceanographic Inst, Woods Hole, MA, United States, (2)SCSIO South China Sea Institute of Oceanology, Chinese Acaademy of Sciences, Guangzhou, China
Abstract:
We quantify along-trench variations in plate flexural bending along the Manila trench in the South China Sea. A 3-D interpreted flexural deformation surface of the subducting South China Sea Plate was obtained by removing from the observed bathymetry the effects of sediment loading, isostatically-compensated topography based on gravity modeling, age-related lithospheric thermal subsidence, and residual short-wavelength features. We analyzed flexural bending of 21 across-trench profile sections along the Manila trench and then calculated five best-fitting tectonic and plate parameters that control the flexural bending for each of the across-trench profile sections. Results of analysis revealed significant along-trench variations: The trench relief of the Manila trench varies from 0.8 to 2.2 km, trench-axis vertical loading (-V0) from -0.4x1012 to 1.21x1012 N/m, and axial bending moment (-M0) from 0.005x1017 to 0.6x1017 N. The effective elastic plate thickness seaward of the Manila outer-rise region (TeM) ranges from 30 to 40 km, while that trench-ward of the outer-rise (Tem) ranges from 11 to 30 km. This corresponds to a reduction in Te of 26-63% for the Manila trench. The transition from TeM to Tem occurs at a breaking distance of 50-120 km from the Manila trench axis. The axial vertical loading, bending moment, and the effective elastic thickness of the Manila trench are much smaller than the Mariana trench (Zhang et al., 2014). The contrast in the flexural bending between the Mariana and Manila trenches might be related to the difference in the ages of the subducting plates and other tectonic variables.

Zhang, F., Lin, J., Zhan, W., 2014. Variations in oceanic plate bending along the Mariana trench, Earth Planet. Sci. Lett. 401, 206–214. doi: 10.1016/j.epsl.2014.05.032