MR52A-07:
Anisotropic Peridotite Rheology and Regional Upper Mantle Flow Patterns

Friday, 19 December 2014: 11:50 AM
Donna K Blackman1, Donald Boyce2, Paul Dawson2 and Olivier Castelnau3, (1)University of California San Diego, La Jolla, CA, United States, (2)Cornell University, Ithaca, NY, United States, (3)CNRS, Paris Cedex 16, France
Abstract:
We investigate the rheologic impact of strong lattice preferred orientation (LPO), such as develops due to plate-driven shear, on the pattern of upper mantle flow near plate boundaries. We use finite element models to simulate a regional system of mantle flow, that includes LPO evolution in olivine polycrystal aggregates tracked along flow paths and anisotropic viscosity tensors based on the LPO. Our first, loosely coupled approach begins with a flow field based on a scalar viscosity. The results are postprocessed to compute LPO by integration along streamlines, and an anisotropic viscosity tensor field is derived from LPO. A new flow field is then computed based on the viscosity tensor field. For this case, the predicted flow field differed in a modest but geologically relevant way from the isotropic case.

 In preparation for incorporating the LPO and effective viscosity calculation directly into the flow code, we have been testing this step separately to assess the sensitivity of the computed tensor to specified deformation parameters. New work explores a power law stress:strain rate relation for the LPO development, upon which the aggregate’s effective viscosity tensor depends. The pattern and amplitude of predicted deviation from isotropic viscosity are stronger than for the previously assumed linear stress:strain rate case, as expected. Initial runs that employ the power law viscosity tensor in updated flow calculations are underway at the time of this writing. In addition to the stress exponent for LPO and the resulting viscosity tensor, flow model parameters that notably impact the predictions include the specified stiffening as asthenosphere cools to lithospheric temperatures and mesh resolution within the axial and the base of lithosphere regions. We will present results for subaxial oceanic spreading center flow and report the outcomes of model parameter testing.