NH42A-02:
Challenges in Modeling Debris-Flow Initiation during the Exceptional September 2013 Northern Colorado Front Range Rainstorm

Thursday, 18 December 2014: 10:35 AM
Rex L Baum, Jeffrey A. Coe, Jonathan Godt and Jason W Kean, U.S. Geological Survey, Denver, CO, United States
Abstract:
Heavy rainfall during 9 – 13 September 2013 induced about 1100 debris flows in the foothills and mountains of the northern Colorado Front Range. Eye-witness accounts and fire-department records put the times of greatest landslide activity during the times of heaviest rainfall on September 12 – 13. Antecedent soil moisture was relatively low, particularly at elevations below 2250 m where many of the debris flows occurred, based on 45 - 125 mm of summer precipitation and absence of rainfall for about 2 weeks before the storm.

Mapping from post-event imagery and field observations indicated that most debris flows initiated as small, shallow landslides. These landslides typically formed in colluvium that consisted of angular clasts in a sandy or silty matrix, depending on the nature of the parent bedrock. Weathered bedrock was partially exposed in the basal surfaces of many of the shallow source areas at depths ranging from 0.2 to 5 m, and source areas commonly occupied less than 500 m2. Although 49% of the source areas occurred in swales and 3 % in channels, where convergent flow might have contributed to pore-pressure build up during the rainfall, 48% of the source areas occurred on open slopes. Upslope contributing areas of most landslides (58%) were small (< 1000 m2) and 78% of the slides occurred on south-facing slopes (90°≤ aspect ≤270°).

These observations pose challenges for modeling initiation of the debris flows. Effects of variable soil depth and properties, vegetation, and rainfall must be examined to explain the dominance of debris flows on south-facing slopes. Accounting for the small sizes and mixed swale and open-slope settings of source areas demands new approaches for resolving soil-depth and physical-properties variability. The low-moisture initial conditions require consideration of unsaturated zone effects. Ongoing fieldwork and computational modeling are aimed at addressing these challenges related to initiation of the September 2013 debris flows.