T21C-4617:
Reconstructing a Hot and High Eocene Sierra Nevada Using Oxygen and Hydrogen Isotopes in Kaolinite

Tuesday, 16 December 2014
Hari Mix1, Daniel E Ibarra2, Andreas Mulch3, Stephan A Graham4 and C Page Chamberlain2, (1)Santa Clara University, Santa Clara, CA, United States, (2)Stanford University, Environmental Earth System Science, Stanford, CA, United States, (3)Biodiversity and Climate Research Centre, Frankfurt, Germany, (4)Stanford University, Stanford, CA, United States
Abstract:
Despite the broad interest in determining the topographic and climatic histories of mountain ranges, the evolution of California’s Sierra Nevada remains actively debated. Prior stable isotope-based studies of Sierra Nevada have relied exclusively on hydrogen isotopes in kaolinite, hydrated volcanic glass and leaf n-alkanes. Additional constraints from the oxygen isotope composition of phyllosilicates increase the robustness of findings from a single isotope system and allow for the reconstruction of paleotemperatures. Here, we reconstruct the temperature and elevation of the Early Eocene Sierra Nevada using the oxygen isotope composition of kaolinitized granite clasts from the ancestral Yuba and American Rivers. We evaluate the possible contributions of hydrogen isotope exchange by direct comparison with more robust oxygen isotope measurements. Next, we utilize differences in the hydrogen and oxygen isotope fractionation in kaolinite to constrain paleotemperature.

Oxygen isotope geochemistry of in-situ kaolinites indicates upstream (eastward) depletion of 18O in the northern Sierra Nevada. δ18O values ranging from 11.4 – 14.4 ‰ at the easternmost localities correspond to paleoelevations as high as 2400 m when simulating the orographic precipitation of moisture from a Pacific source using Eocene boundary conditions. This finding is consistent with stable isotope studies of the northern Sierra, but oxygen isotope based paleoelevation estimates are systematically ~500 – 1000 m higher than those from hydrogen-based estimates from the same samples. Kaolinite geothermometry from 16 samples measured in duplicate or triplicate produce an average Early Eocene temperature of 24.2 ± 2.0 °C (1s). This kaolinite temperature reconstruction is in agreement with paleofloral and geochemical constraints and general circulation model simulations from Eocene California. Our results confirm prior hydrogen isotope-based paleoelevations and further substantiate the existence of a hot and high Eocene Sierra Nevada.