A11F-3068:
Determining in-Cloud Ice Particle Canting Distributions Using Radar

Monday, 15 December 2014
Ryan E Honeyager, Florida State University, Earth, Ocean and Atmospheric Science, Tallahassee, FL, United States and Guosheng Liu, Florida State University, Tallahassee, FL, United States
Abstract:
With the advent of satellite-borne and ground-based radar and radiometers, it is now possible to observe ice cloud processes with unprecedented global coverage, simultaneously and at multiple frequencies. Unlike with liquid water, ice is nonspherical. Because of this asymmetry, in-cloud ice can sometimes have a preferred orientation. Instead of the particles orienting randomly, these particles may align roughly parallel to the horizon due to dynamical forcings. As such, this means that radar and radiometer observation angle relative to vertical / nadir must also be considered when recovering information from these instruments.

To gain a preliminary understanding of these effects, angle-dependent single scattering properties (i.e. scattering and backscatter cross-section) are first determined using the discrete dipole approximation (DDA). Several particle morphologies are considered, including bullet rosette aggregates [Nowell, Liu and Honeyager 2013], dendritic snowflakes, sector snowflakes and bullet rosettes [Liu 2008]. Early profiles are constructed, showing the change in backscatter and scattering cross-sections as a function of radar observation angle and degree of alignment in the ensemble.

To make a more physical model, it is not assumed that all hydrometeors are either fully randomly oriented or fully aligned. It is expected that transition regions occur in clouds, with partial alignment. We use an ensemble von Mises-Fisher distribution to examine these alignment effects. Finally, the model is to be validated against dual-frequency radar retrievals (Ka and W-Band) using ARM scanning-mode radars. By examining clouds at multiple angles and multiple frequencies as they move over the radar site, it is possible to determine the hydrometeor canting distribution. Observations will be used to develop a model for where hydrometeor alignment effects are expected to occur, and to determine the impact hydrometeor alignment has on existing zenith and nadir-pointing radar.