A11B-3017:
South Pacific Decadal Variability Since the 1790s and Changes in Earth Surface Temperature

Monday, 15 December 2014
Braddock K Linsley1, Henry C Wu2, Emilie P Dassie1,3 and Daniel P Schrag4, (1)Lamont -Doherty Earth Observatory, Palisades, NY, United States, (2)MARUM - University of Bremen, Bremen, Germany, (3)Laboratoire des Sciences du Climat et de l’Environnement, Gif-sur-Yvette, France, (4)Harvard Univ, Cambridge, MA, United States
Abstract:
Changes in oceanic heat storage may be partly responsible for the most recent stall (or hiatus) in rising Earth surface temperatures since ~2000 C.E. Instrumental data indicates that this most recent stall is coincident with a phase reversal of the North Pacific Decadal Oscillation (PDO). The main locations for this heat exchange with the atmosphere appear to be the tropical and mid-latitude regions of the surface ocean, primarily in the Pacific. We have been investigating poorly understood decadal surface ocean variability in the South Pacific Convergence Zone (SPCZ) region. Despite very sparse instrumental water temperature data in the South Pacific to define the decadal changes at the sea surface and in the upper water column, the available data suggests a disproportionately large role of the Southwest Pacific in decadal-scale changes in heat sequestration. We have generated coral Sr/Ca-derived sea surface temperature (SST) time-series extending back to 1791 C.E. from Fiji, Tonga and Rarotonga (FTR) in the SPCZ region of the subtropical Southwest Pacific and show that decadal-scale SST fluctuations in this broad region are concurrent with the PDO at least since ~1930 C.E. Beginning in the mid-20th century, when more reliable instrumental temperature and ocean heat content data exist, decades of warmer South Pacific subtropical SST co-occur with elevated South Pacific upper ocean (0-700m) heat content. These decadal-scale South Pacific warming events coincide with decadal-scale stalls or plateaus in rising global temperatures. Cross wavelet coherence analysis reveals an increase in the frequency of decadal SST variability from a period near 30 years throughout the 1800s to ~20 years in the later half of the 20th century. Our results provide strong supporting evidence that decadal-scale changes in global surface temperatures are in-part, related to heat storage in the upper water column in the subtropical Pacific. Our results also suggest that decadal-scale stalls in rising global surface temperature are to be expected in the near-future and may be predictable.