B23A-0182:
Growing Rocks: Implications of Lithification for Microbial Communities and Nutrient Cycling

Tuesday, 16 December 2014
Jessica R Corman, Amisha T Poret-Peterson and James J Elser, Arizona State University, Tempe, AZ, United States
Abstract:
Lithifying microbial communities (“microbialites”) have left their signature on Earth’s rock record for over 3.4 billion years and are regarded as important players in paleo-biogeochemical cycles. In this project, we study extant microbialites to understand the interactions between lithification and resource availability. All microbes need nutrients and energy for growth; indeed, nutrients are often a factor limiting microbial growth. We hypothesize that calcium carbonate deposition can sequester bioavailable phosphorus (P) and expect the growth of microbialites to be P-limited. To test our hypothesis, we first compared nutrient limitation in lithifying and non-lithifying microbial communities in Río Mesquites, Cuatro Ciénegas. Then, we experimentally manipulated calcification rates in the Río Mesquites microbialites. Our results suggest that lithifying microbialites are indeed P-limited, while non-lithifying, benthic microbial communities tend towards co-limitation by nitrogen (N) and P. Indeed, in microbialites, photosynthesis and aerobic respiration responded positively to P additions (P<0.05). Organic carbon (OC) additions caused shifts in bacterial community composition based on analysis of 16S rRNA genes. Unexpectedly, calcification rates increased with OC additions (P<0.05), but not with P additions, suggesting that sulfate reduction may be an important pathway for calcification. Experimental reductions in calcification rates caused changes to microbial biomass OC and P concentrations (P<0.01 and P<0.001, respectively), although shifts depended on whether calcification was decreased abiotically or biotically. These results show that resource availability does influence microbialite formation and that lithification may promote phosphorus limitation; however, further investigation is required to understand the mechanism by which the later occurs.