SH53A-4200:
Cyclic Variations of Near-Earth Conditions and Solar Magnetic Multipole Fields

Friday, 19 December 2014
Bogyeong Kim1, Jeongwoo Lee1, Suyeon Oh2 and Yu Yi1, (1)Chungnam National University, Daejeon, South Korea, (2)Chonnam National University, Gwangju, South Korea
Abstract:
We have investigated the cyclic variations of the magnetic multipole components of solar fields in comparison with various indices for the solar, interplanetary, and geomagnetic activities measured from 1976 to 2012 (from Solar Cycle 21 to the early phase of Cycle 24). The magnetic multipole components are calculated using the synoptic magnetic field data and the potential field source surface (PFSS) model of the Wilcox Solar Observatory (WSO). While most solar activity indices such as sunspot number, total solar irradiance, 10.7 cm radio flux, and solar flare occurrence rate are highly correlated with the flux of magnetic quadrupole component, the solar wind dynamic pressure and the geomagnetic activity index, AE, are rather correlated with the dipole and higher-order pole components, respectively. The cyclic variation of the dipole components is out of phase with the solar sunspot cycle and that of the quadrupole component is in phase. It is therefore argued that the temporal correlations of the activity indices with the individual multipole components as found in this study may clarify why some of the activity indices are seemingly out of phase with the sunspot cycle.