GC54B-01:
a Process-Based Drought Early Warning Indicator for Supporting State Drought Mitigation Decision

Friday, 19 December 2014: 4:00 PM
Rong Fu, Dinali Nelun Fernando and Bing Pu, University of Texas at Austin, Geological Sciences, Austin, TX, United States
Abstract:
Drought prone states such as Texas requires creditable and actionable drought early warning ranging from seasonal to multi-decadal scales. Such information cannot be simply extracted from the available climate prediction and projections because of their large uncertainties at regional scales and unclear connections to the needs of the decision makers. In particular, current dynamic seasonal predictions and climate projections, such as those produced by the NOAA national multi-models ensemble experiment (NMME) and the IPCC AR5 (CMIP5) models, are much more reliable for winter and spring than for the summer season for the US Southern Plains. They also show little connection between the droughts in winter/spring and those in summer, in contrast to the observed dry memory from spring to summer over that region.

To mitigate the weakness of dynamic prediction/projections, we have identified three key processes behind the spring-to-summer dry memory through observational studies. Based on these key processes and related fields, we have developed a multivariate principle component statistical model to provide a probabilistic summer drought early warning indicator, using the observed or predicted climate conditions in winter and spring on seasonal scale and climate projection for the mid-21stcentury. The summer drought early warning indicator is constructed in a similar way to the NOAA probabilistic predictions that are familiar to water resource managers. The indicator skill is assessed using the standard NOAA climate prediction assessment tools, i.e., the two alternative forced choice (2AFC) and the Receiver Operating Characteristic (ROC). Comparison with long-term observations suggest that this summer drought early warning indicator is able to capture nearly all the strong summer droughts and outperform the dynamic prediction in this regard over the US Southern Plains. This early warning indicator has been used by the state water agency in May 2014 in briefing the state drought preparedness council and will be provided to stake holders through the website of the Texas state water planning agency.

We will also present the results of our ongoing work on using NASA satellite based soil moisture and vegetation stress measurements to further improve the reliability of the summer drought early warning indicator.