SM11B-07:
Cluster Multi-Point Studies of the Auroral Acceleration Region
Monday, 15 December 2014: 9:30 AM
Goran Tage Marklund, Royal Inst Technology, KTH/EES, Stockholm, Sweden
Abstract:
Multi-point studies of the auroral acceleration region (AAR) by the Cluster spacecraft has enabled a number of open issues on the auroral acceleration to be addressed and revealed. Data from AAR crossings of Inverted-V aurora, by the C1 and C3 spacecraft at different altitudes, enabled a detailed reconstruction of the acceleration potential and a verification of its stability on a five min time scale. The relative role of quasi-static and Alfvénic acceleration behind aurora are addressed in two event studies. In one of these, the two processes are shown to operate jointly on the plasma population within the polar cap boundary. In the other, the electron energy flux producing multiple arcs within a surge is found to be generally dominated by the quasi-static contribution. Acceleration features and the FAC closure associated with surge-horn aurora crossed by the Cluster fleet were derived in another event study. A study of the density distribution within the auroral cavity, showed for all included events, exponential density decreases, relative to the ambient densities, from the mid to top of the AAR. In another study, cavities were found to extend well beyond the top of the AAR. Finally, statistical high-latitude electric field and plasma density distributions are presented based on 10 years of Cluster data collected between 2 and 4 RE altitudes. Intense electric fields appear in two altitude regimes on the nightside, separated by a gap at 2.8 RE. The upper altitude fields were interpreted to be Alfvénic and the lower altitude fields quasi-static, related to the AAR. The gap in the electric field intensity indicates a partial closure of the potentials in the lower region, with similarities to model results of reflected Alfvén waves and earlier reported observations