GC51A-0398:
Climate Change Projection for the Department of Energy’s Savannah River Site

Friday, 19 December 2014
David W Werth, Savannah River Nuclear Solutions, LLC, Aiken, SC, United States
Abstract:
As per recent Department of Energy (DOE) sustainability requirements, the Savannah River National Laboratory (SRNL) is developing a climate projection for the DOE’s Savannah River Site (SRS) near Aiken, SC. This will comprise data from both a statistical and a dynamic downscaling process, each interpolated to the SRS.

We require variables most relevant to operational activities at the site (such as the US Forest Service’s forest management program), and select temperature, precipitation, wind, and humidity as being most relevant to energy and water resource requirements, fire and forest ecology, and facility and worker safety. We then develop projections of the means and extremes of these variables, estimate the effect on site operations, and develop long-term mitigation strategies. For example, given that outdoor work while wearing protective gear is a daily facet of site operations, heat stress is of primary importance to work planning, and we use the downscaled data to estimate changes in the occurrence of high temperatures.

For the statistical downscaling, we use global climate model (GCM) data from the Climate Model Intercomparison Project, version 5 (CMIP-5), which was used in the IPCC Fifth Assessment Report (AR5). GCM data from five research groups was selected, and two climate change scenarios – RCP 4.5 and RCP 8.5 – are used with observed data from site instruments and other databases to produce the downscaled projections.

We apply a quantile regression downscaling method, which involves the use of the observed cumulative distribution function to correct that of the GCM. This produces a downscaled projection with an interannual variability closer to that of the observed data and allows for more extreme values in the projections, which are often absent in GCM data.

The statistically downscaled data is complemented with dynamically downscaled data from the NARCCAP database, which comprises output from regional climate models forced with GCM output from the CMIP-3 database of GCM simulations. Applications of the downscaled climate projections to some of the unique operational needs of a large DOE weapons complex site are described.