B31G-0119:
Patterns in DOC Concentration and Composition in Tundra Watersheds in the Kolyma River Basin
Wednesday, 17 December 2014
Megan Irene Behnke1, John D Schade1, Greg J Fiske2, Kyle A Whittinghill3 and Nikita Zimov4, (1)St. Olaf College, Northfield, MN, United States, (2)Woods Hole Research Center, Falmouth, MA, United States, (3)Saint Olaf College, Biology and Environmental Studies, Northfield, MN, United States, (4)Northeast Scientific Station, Cherskiy, Russia
Abstract:
Much of the world’s soil carbon is frozen in permafrost in the Arctic. As the climate warms and permafrost thaws, this carbon will again be actively cycled. Whether it is exported to the ocean or released as greenhouse gases to the atmosphere depends on the form of carbon compounds and conditions encountered during transport, and will determine the strength of permafrost thaw as a feedback on climate change. To better understand the fate of this carbon, we determined how and where in the landscape dissolved organic carbon (DOC) breaks down as water transports it from tundra to ocean. We compared DOC concentration and composition along flowpaths within watersheds and at the mouths of watersheds differing in drainage area. We incubated filtered water samples in light and dark, including filter-sterilized samples, to assess the interactions between light and microbial processing as mechanisms of DOC loss. Composition was assessed using optical measurements associated with the structure of organic compounds. DOC concentration declined along flowpaths within watersheds, with most loss occurring in aquatic environments high in the landscape. We also found a negative correlation between watershed size and DOC concentration. These results suggest that much of the processing of organic carbon occurs in small streams. In addition, the relationship with drainage area suggests that residence time in streams has a large impact on transformation of terrestrial carbon during transport. We found no substantial differences in optical characteristics of DOC, indicating that breakdown processes were not selective, and that light caused much of the breakdown. This conclusion is supported by the incubation experiment, which showed greater breakdown by light, and evidence that light stimulated higher rates of microbial processing. These results highlight the importance of inland aquatic ecosystems as processors of organic matter, and suggest that organic carbon from permafrost thaw is likely to be processed high in the landscape rather than transported to the ocean. Furthermore, the importance of light-induced breakdown as a mechanism for carbon loss suggests that the timing of DOC transport relative to seasonal changes in light intensity may influence the impact of permafrost thaw on climate change.