GC23H-04:
Holocene River Dynamics, Climate Change and Floodwater Farming in the Watersheds of the Pamir and Tien Shan Mountains of Inner Asia

Tuesday, 16 December 2014: 2:40 PM
Irina P Panyushkina1, Mark G Macklin2 and Willem H.J. Toonen2, (1)University of Arizona, Tucson, AZ, United States, (2)Aberystwyth University, Department of Geography and Earth Sciences, Ceredigion, United Kingdom
Abstract:
The Ili, Syr Dayra and Amu Dayra rivers of Inner Asia are emerging as critical areas for the development of irrigation-based agriculture in the ancient world. Following research by Russian archaeologists in the 1970s it is evident that these watersheds had flourishing riverine civilizations comparable to those in Mesopotamia and the Indus Valley. But unlike these areas where the relationship between Holocene river dynamics, climate change and floodwater farming is increasingly underpinned by radiometric dating, the alluvial archaeology of Inner Asia is significantly under researched. To address this, a major multi-disciplinary research program was begun in 2011 centred on the Talgar catchment, a south-bank tributary of the Ili river, southeast Kazakhstan. Building on archaeological excavations and surveys conducted over the past 20 years, we have undertaken one of the most detailed investigations of Holocene people-river environment interactions in Inner Asia. River development has been reconstructed over the last 20,000 years and human settlement histories from the Eneolithic to the Medieval period documented. Periods of Holocene river aggradation and high water levels in Lake Balkhash and Aral Sea correspond with cooler and wetter neoglacial episodes while river entrenchment and floodplain soil development are associated with warmer and drier conditions. Floodwater farming in the Talgar river reached its acme in the late Iron Age (400-200 cal. BC) with more than 60 settlement sites and 550 burial mounds. This corresponds to a period of reduced flood flows, river stability and glacier retreat in the Tien Shan headwaters. A new hydroclimatic-based model for the spatial and temporal dynamics of floodwater farming in the Ili, Syr Dayra and Amu Dayra watersheds is proposed, which explains the large scale expansion (down-river) and contraction (up-river) of settlements since the first use of irrigation in the Neolithic through to the late Medieval period.