Fault Population Analyses in the Eastern California Shear Zone: Insights into the Development of Young, Actively Evolving Plate Boundary Structures

Tuesday, 16 December 2014
Xu Zhou, Nancye H Dawers and Reda M Amer, Tulane University, Department of Earth and Environmental Sciences, New Orleans, LA, United States
Relationships between cumulative fault displacement, slip rate and length, along with fault population statistics are analyzed for faults located within the Eastern California Shear Zone (ECSZ), focusing on areas north of the Garlock fault. Here many faults are geologically young and in an early stage of evolution, while many older and larger faults are also still active. We analyze scaling relationships for both strike-slip and normal faults in order to determine whether the two fault populations share the same properties or not. Cumulative displacement, slip rate and length data are collected from published maps and literature sources. The dataset spans fault lengths from tens of meters to hundreds of kilometers. Results of fault scaling analyses indicate that displacement has a linear relationship with fault length for normal faults in this area over the entire length span, whereas strike-slip faults do not have a clear displacement-length scaling relation. For a given length, the subset of strike-slip faults typically exhibits a much larger displacement than that for the normal faults. The slip rate versus length trends are similar but are considerably more scattered. In addition, we define a subpopulation of normal faults that are kinematically related to the right-lateral strike-slip faults; these have a maximum length set by the spacing between the right-lateral faults. Fault size-frequency distributions also indicate differences between the normal and strike-slip fault populations. Overall, the normal faults have higher ratios of cumulative number to fault length than the strike-slip population does, which we relate to different patterns of localization of faulting. We interpret these trends as reflecting different tectonic histories, with the majority of normal faults being intraplate faults associated with Basin and Range extension and the strike-slip faults being kinematically connected with plate boundary.