An Overview of Recent Observations on Lava-H2O interactions

Monday, 15 December 2014
Benjamin R Edwards, Dickinson College, Carlisle, PA, United States
Lava flows can be sensitive recorders of their environments of formation (e.g., pillow lava). However, while deposits formed during interactions between lava and frozen water are increasing critical for constraining paleoclimate reconstructions on Earth and Mars, those interactions are subtle and complex. Fortunately, recent observations made during eruptions (2010 Fimmvorduhals/Eyjafjallajokull, Iceland; 2012-13 Tolbachik, Russia; 2013 Veniaminof, Alaska), during large-scale experiments (Syracuse Lava Lab), and on ancient deposits are shedding new light on these complexities.

To understand these observations, it is critical to constrain the nature (porosity, permeability, ability to deform) of the boundary between the lava and the substrate. When lava travels directly on top of non-permeable ice, meltwater is produced rapidly enough to significantly accelerate lava movement (e.g., ‘hydroplaning’ or ‘Leidenfrost effect’). The lack of surface permeability also facilitates ingestion of steam into the base of the lava for several minutes on the scale of experiments (dm); anomalously large gas cavities are also present in modern and ancient lava flow deposits inferred to have formed in water/ice-rich environments. When lava is emplaced directly on snow, the permeability of the substrate controls meltwater accumulation, which can facilitate/hinder heat transfer but can also weaken the substrate. Finally, the presence of basal lava flow breccia (‘a’a flows) or an earlier erupted tephra blanket at the lava-H2O boundary acts to significantly slow heat transfer.

The speed of lava emplacement may also be important. The lavas emplaced during most of the eruptions above were not able to cover a large enough area to quickly generate significant volumes of meltwater. However, at the high discharge rates for the first few days of the Tolbachik eruption (~400 m3 s-1), effusion onto a less permeable surface (e.g., ice instead of snow) could generate significant volumes of meltwater.