Recent Results of Hadal Investigations in the Southern Mariana Trench

Friday, 19 December 2014: 8:00 AM
Patricia B Fryer1, Eric Hellebrand1, Shiv K Sharma1, Tayro Acosta-Maeda1, Brian R Jicha2 and James Cameron3, (1)Univ Hawaii, Honolulu, HI, United States, (2)University of Wisconsin Madison, Madison, WI, United States, (3)Lightstorm Entertainment, Santa Monica, CA, United States
The deepest parts of the southern Mariana Trench have variously been interpreted to 1) indicate strike-slip motion along the trench, 2) contain a series of 3 sediment ponds at greater than 10,900 m depth separated from one another by fault-controlled ridges on the subducting plate, and 3) have an even deeper feature in the western-most pond (Vitiaz Deep). Recent lander deployments in all three ponds and the Deepsea Challenger submersible dive by J. Cameron in 2012 showed that the deepest ponds within the Challenger Deep area have nearly unbroken, flat surfaces. One point explored showed veined serpentinite at a depth of 10,800+ m. The potential for active serpentinite-hosted seeps and vent communities was demonstrated for the Shinkai Vent Field at 5,800m depth. Rocks collected using the Wood Hole Oceanographic Institution’s hybrid remotely operated vehicle, Nereus, in 2009 from deep (10,879 m) on the incoming plate south of the Challenger Deep, were recovered from the base of a fault scarp where large, columnar-jointed blocks are draped with sediment. Optical microscopy, electron-microprobe and Raman analysis show that they are partially altered massive diabase with altered interstitial glass and containing microbial tubules in vug–filling secondary phases. The chain of seamounts striking NNW, colinear with the Lyra Trough, has been interpreted as a boundary between the Pacific Plate and the seafloor north of the Caroline Ridge. Sediments, drilled from above postulated basement north of the Caroline Ridge are no older that Oligocene. Ar/Ar age dates completed for one rock collected by Nereus in 2009 give a weighted mean plateau age, based on two experiments, of 24.6 +/- 3.2 Ma. Thus, the igneous basement of the subducting plate south of the Challenger Deep is, far younger than the Jurassic Pacific Plate subducting further east. This represents a previously unidentified tectonic plate. With new vehicles and technologies the future for hadal exploration is ripe.