GC23E-0674:
Evidence That Drought-Induced Stomatal Closure Is Not an Important Constraint on White Spruce Performance Near the Arctic Treeline in Alaska

Tuesday, 16 December 2014
Paddy Sullivan, Annalis Brownlee, Sarah Ellison and Bjartmar Sveinbjornsson, University of Alaska Anchorage, Anchorage, AK, United States
Abstract:
Tree cores collected from trees growing at high latitudes have long been used to reconstruct past climates, because of close positive correlations between temperature and tree growth. However, in recent decades and at many sites, these relationships have deteriorated and have even become negative in some instances. The observation of declining tree growth in response to rising temperature has prompted many investigators to suggest that high latitude trees may be increasingly exhibiting drought-induced stomatal closure. In the Brooks Range of northern Alaska, the observation of low and declining growth of white spruce is more prevalent in the central and eastern parts of the range, where precipitation is lower, providing superficial support for the drought stress hypothesis. In this study, we investigated the occurrence of white spruce drought-induced stomatal closure in four watersheds along a west to east gradient near the Arctic treeline in the Brooks Range. We obtained a historical perspective on tree growth and water relations by collecting increment cores for analysis of ring widths and carbon isotopes in tree-ring alpha-cellulose. Meanwhile, we made detailed assessments of contemporary water relations at the scales of the whole canopy and the needle. All of our data indicate that drought-induced stomatal closure is probably not responsible for low and declining growth in the central and eastern Brooks Range. Carbon isotope discrimination has generally increased over the past century and our calculations indicate that needle inter-cellular CO2 concentration is much greater now than it was in the early 1900’s. Measurements of needle gas exchange are consistent with the tree core record, in the sense that instances of low photosynthesis at our sites are not coincident with similarly low stomatal conductance and low inter-cellular CO2 concentration. Finally, hourly measurements of xylem sap flow indicate that trees at our study sites are able to maintain near peak canopy transpiration under the highest atmospheric vapor pressure deficits observed (>3.0 kPa). Thus, our tree-ring data provide further evidence of what has become known as the “divergence problem” in northern forests, but our physiological measurements suggest that drought-induced stomatal closure may not be the cause.