Upper Water Structure and Mixed Layer Depth in Sub-Tropical Waters: The Seats Station in the Northern South China Sea

Thursday, 18 December 2014
Jen Hua Tai and George T F Wong, Academia Sinica, Taipei, Taiwan
702 CTD profiles were collected in the subtropical northern South China Sea at and in the vicinity of the SouthEast Asian Time-series Study (SEATS) station (18.2oN, 115.8oE) between 17.5 and 18.5oN and 115.3 and 116.3oE in 64 cruises in 1997 to 2013. The hydrographic structure of the upper water above the permanent thermocline may be classified into 4 principal types: (a) classic type (an almost isopycnic upper water); (b) stepwise type (with one or more small but significant step-increases in σθ  in the upper water); (c) graded type (an approximately constant depth gradient in a monotonic increase in σθ in the upper water); and (d) mixed type (a combination of the stepwise and graded types). The 4 types of upper water were found in 75, 14, 5, and 6% of the cruises, respectively. Ten schemes were applied to these data to determine the mixed layer depth (MLD): 4 fixed temperature difference (FTD) methods (0.2, 0.5, 0.8 and 1.0oC decrease from 10 m); 1 fixed density difference (FDD) method (0.125 σθ increase from 10 m); 1 fixed temperature gradient (FTG) method (at 0.05oC/m); 3 fixed density gradient (FDG) methods (at 0.01, 0.05 and 0.1 σθ/m); and the maximum density gradient (MDG) method. MLD could not be clearly depicted in the 3 minor types of upper water. In the classical type, while similar MLD-s were found in a large majority of the cruises among all 10 methods, substantial discrepancies among methods could be found. The most consistent results, generally within ±5 m, were found among the FDG method at 0.05, 0.1 σθ/m and FTD method at 0.8 and 1.0oC. The MDG method gave consistently deeper MLD by ~8 m. If that difference was taken into account, the results were generally consistent with those from the other 4 methods. The remaining 5 methods could all yield MLD-s shallower than the first 4 methods by >10 m as they failed to capture the bottom of the mixed layer as indicated by visual inspection.