H31C-0630:
Comparing Assayed Surface Heterogeneity Under Low Versus Maximum Attachment Conditions
Wednesday, 17 December 2014
Jacqueline Anna Rasmuson, University of Utah, Salt Lake City, UT, United States
Abstract:
It has long been suspected that nanoscale heterogeneity is responsible for colloid attachment to surfaces under conditions unfavorable to attachment. Recently, mechanistic colloid force and torque simulations have been applied to arrays of experimental data to back out nanoscale heterogeneity that is representative of the collector surface. These recent experiments were performed under flowing conditions with limited colloid attachment. This presentation explores whether surface heterogeneity backed out from experiments performed under conditions designed to maximize attachment (e.g., non-flowing followed by elution) yields a characteristic heterogeneity that can be reproduced on surfaces backed out under other conditions. The nature of attachment under flowing vs. non-flowing conditions differed for large (2.0 μm) relative to small (0.25 μm) colloids. For example, the maximum loading of small colloids was the same under flowing conditions versus non-flowing conditions followed by elution. The maximum loading of large colloids however was much lower under flowing conditions relative to non-flowing conditions followed by elution. This difference indicates a mechanism contributing to the attachment of large colloids that is not included in mechanistic force and torque balances. These possible mechanisms are reviewed and strategies to incorporate them are discussed. The reproducibility of attachments and their spatial distribution will also be examined.