V11B-4713:
A Descriptive Genetic Classification for Glaciovolcanoes
Monday, 15 December 2014
Kelly Russell1, Benjamin R Edwards2 and Lucy A Porritt1, (1)University of British Columbia, Vancouver, BC, Canada, (2)Dickinson College, Carlisle, PA, United States
Abstract:
We review the recently published descriptive genetic classification for glaciovolcanoes (Russell et al., Quat Sci Rv, 2014). The new classification uses ‘tuya’ as a root word for all glaciovolcanic edifices, and with modifiers that make the classification descriptive (e.g., andesitic, lava-dominated, flat topped tuya). Although tuyas can range in composition from basaltic to rhyolitic, many of the characteristics diagnostic of glaciovolcanic environments are largely independent of lava composition (e.g., edifice morphology, columnar jointing patterns, glass distributions, pyroclast shapes). Tuya subtypes are first classified on the basis of variations in edifice-scale morphologies (e.g., conical tuya) then, on the proportions of the essential lithofacies (e.g., tephra-dominated conical tuya), and lastly on magma composition (e.g., basaltic, tephra-dominated, conical tuya). The lithofacies associations within tuyas broadly record the interplay between magmatic and glaciohydraulic conditions extent during the active phases of the eruption, including the dominant style of eruption (e.g., explosive vs. effusive). We present nine distinct, endmember models for glaciovolcanic edifices that simultaneously record changes in eruption conditions (explosive, transitional, effusive) for different general glaciohydraulic conditions (closed/sealed, leaky/partly sealed, open/well-drained). To date we have identified potential examples for 7 of the 9 models. Use of a simplified, descriptive classification scheme for glaciovolcanoes will facilitate communications amongst volcanologists and planetary scientists and the use of tuyas for recovering critical paleo-environmental information, particularly the local glaciohydraulics extent during eruptions.