C13B-0810
Estimation of glacier mass balance: An approach based on satellite-derived transient snowlines and a temperature index driven by meteorological observations

Monday, 14 December 2015
Poster Hall (Moscone South)
Sayli Atul Tawde, Anil Vishnupant Kulkarni and Govindasamy Bala, Indian Institute of Science, Bangalore, India
Abstract:
In the Himalaya, large area is comprised of glaciers and seasonal snow, mainly due to its high elevated mountain ranges. Long term and continuous assessment of glaciers in this region is important for climatological and hydrological applications. However, rugged terrains and severe weather conditions in the Himalaya lead to paucity in field observations. Therefore, in recent decades, glacier dynamics are extensively monitored using remote sensing in inaccessible terrain like Himalaya. Estimation of glacier mass balance using empirical relationship between mass balance and area accumulation ratio (AAR) requires an accurate estimate of equilibrium-line altitude (ELA). ELA is defined as the snowline at the end of the hydrological year. However, identification of ELA, using remote sensing is difficult because of temporal gaps, cloud cover and intermediate snowfall on glaciers. This leads to large uncertainty in glacier mass-balance estimates by the conventional AAR method that uses satellite-derived highest snowline in ablation season as an ELA. The present study suggests a new approach to improve estimates of ELA location. First, positions of modelled snowlines are optimized using satellite-derived snowlines in the early melt season. Secondly, ELA at the end of the glaciological year is estimated by the melt and accumulation models driven using in situ temperature and precipitation records. From the modelled ELA, mass balance is estimated using the empirical relationship between AAR and mass balance. The modelled mass balance is validated using field measurements on Chhota Shigri and Hamtah glaciers, Himachal Pradesh, India. The new approach shows a substantial improvement in glacier mass-balance estimation, reducing bias by 46% and 108% for Chhota Shigiri and Hamtah glaciers respectively. The cumulative mass loss reconstructed from our approach is 0.85 Gt for nine glaciers in the Chandra basin from 2001 to 2009. The result of the present study is in agreement with climate warming reported in this basin.