C13B-0809
Examining a Half Century of Northwestern North American Glacier Behavior
Monday, 14 December 2015
Poster Hall (Moscone South)
Mark J. Fahey, Special Applications Science Center, Denver, CO, United States, Bruce Franklin Molnia, US Geological Survey, National Civil Applications, Reston, VA, United States and Beverly Friesen, USGS, Baltimore, MD, United States
Abstract:
In 1957, as part of the United States’ contribution to the International Geophysical Year (IGY), the American Geographical Society (AGS) initiated a multi-institutional mapping project to produce 1:10,000-scale topographic maps of nine northwestern North American glaciers. The project’s goal was to prepare precise maps at large scales of selected small glaciers to form a permanent record of the condition of these glaciers so that at a future date they could be resurveyed and compared. Continued surveys would give the history of wastage and accumulation, and more accurate interpretation of the response of these glaciers to meteorological and other factors. The resulting maps and a descriptive summary brochure were published in 1960 by the American Geographical Society. The USGS Global Fiducials Program (GFP) began to systematically image the same nine glaciers approximately half-century after its IGY mapping. The results of the GFP analyses would permit the types of comparisons that were envisioned by the IGY project. Imagery of each of these nine glaciers has been collected from multiple sources, including Next View licensed commercial imagery, vertical and oblique aerial photography, Landsat, and US National Imagery Systems. Exploitation of the imagery has resulted in the production of new 21st century maps that can be compared and contrasted with the vintage AGS map set. Comparison will permit the calculation of a number of parameters which will provide a direct insight into the changes that northwestern North American glaciers have been experiencing during the past half century. Specifically, these comparisons will permit the calculation of changes in glacier length, area, thickness, and volume; computation of rates of glacier advance and/or retreat, rates of glacier thickening and/or thinning, and rates of volume change; production of digital elevation models (DEMs); and generation of velocity fields from crevasse migration. The subsequent re-mapping and comparison to the 1950s maps will provide a unique survey of glacier change across western North America from Alaska to northwestern Washington. Each pair of glacier maps will be accompanied with a summary document describing the changes that have occurred at that glacier. From north to south, the nine IGY glaciers span a distance of more than 2,600 km.