GC51F-1154
Chromium uptake and adsorption in cultured marine phytoplankton - implications for the marine Cr cycle

Friday, 18 December 2015
Poster Hall (Moscone South)
David Semeniuk, University of Bern, Geology, Bern, Switzerland; University of British Columbia, Earth, Ocean, and Atmospheric Sciences, Vancouver, BC, Canada, Maria Teresa Maldonado, University of British Columbia, Vancouver, BC, Canada and Sam Jaccard, University of Bern, Bern, Switzerland
Abstract:
While chromium (Cr) is a known carcinogen and pervasive industrial contaminant, little is known about the processes that affect the distribution and speciation of Cr in uncontaminated seawater. Given the recent development and application of the stable Cr isotope system in the marine environment, a full account of the sources, sinks, and internal processes affecting the modern marine Cr cycle is prudent. Using the radioisotope 51Cr, we investigated the controls of cellular Cr accumulation in an array of marine phytoplankton grown in environmentally relevant Cr concentrations (1-10 nM). Given the affinity of Cr(III) for amorphous Fe-hydroxide mineral surfaces, and the formation of these mineral phases on the outside of phytoplankton cells, extracellular Cr was monitored in a model diatom species (Thalassiosira weissflogii) as extracellular Fe concentrations varied. Extracellular Cr in T. weissflogii increased with increasing extracellular Fe, demonstrating that Cr may be removed from seawater via extracellular adsorption to phytoplankton. Short-term Cr(VI) and Cr(III) uptake experiments performed with T. weissflogii demonstrated that Cr(III) both adsorbed to and was internalized by the cells ~20x faster than Cr(VI). This suggests that Cr(III) is the dominant oxidation state associated with phytoplankton cells. Cellular Cr:C ratios (<0.5 µmol Cr mol C‑1) of the nine phytoplankton species surveyed were significantly lower than previously reported Cr:C ratios of sinking particulate organic matter (~500 µmol Cr mol C-1). Thus, Cr accumulates in sinking particles– likely as Cr(III) – as it travels to the seafloor. Given the large fractionation of stable Cr isotopes during Cr(VI) reduction, Cr associated with exported phytoplankton may be enriched in lighter Cr isotopes. These data will assist investigators using stable Cr isotopes to examine past and present Cr biogeochemical cycles.