H43J-04
Improved Large-Scale Inundation Modelling by 1D-2D Coupling and Consideration of Hydrologic and Hydrodynamic Processes – a Case Study in the Amazon

Thursday, 17 December 2015: 14:25
3020 (Moscone West)
Jannis Michael Hoch, Utrecht University, Utrecht, 3584, Netherlands, Marc FP Bierkens, Utrecht University, Department of Physcial Geography, Utrecht, Netherlands, Rens Van Beek, Utrecht University, Department of physical geography, Utrecht, Netherlands, Hessel Winsemius, Deltares, Delft, Netherlands and Arjen Haag, Utrecht University, Department of Physical Geography, Faculty of Geosciences, Utrecht, Netherlands
Abstract:
Understanding the dynamics of fluvial floods is paramount to accurate flood hazard and risk modeling. Currently, economic losses due to flooding constitute about one third of all damage resulting from natural hazards. Given future projections of climate change, the anticipated increase in the World’s population and the associated implications, sound knowledge of flood hazard and related risk is crucial.

Fluvial floods are cross-border phenomena that need to be addressed accordingly. Yet, only few studies model floods at the large-scale which is preferable to tiling the output of small-scale models. Most models cannot realistically model flood wave propagation due to a lack of either detailed channel and floodplain geometry or the absence of hydrologic processes. This study aims to develop a large-scale modeling tool that accounts for both hydrologic and hydrodynamic processes, to find and understand possible sources of errors and improvements and to assess how the added hydrodynamics affect flood wave propagation.

Flood wave propagation is simulated by DELFT3D-FM (FM), a hydrodynamic model using a flexible mesh to schematize the study area. It is coupled to PCR-GLOBWB (PCR), a macro-scale hydrological model, that has its own simpler 1D routing scheme (DynRout) which has already been used for global inundation modeling and flood risk assessments (GLOFRIS; Winsemius et al., 2013). A number of model set-ups are compared and benchmarked for the simulation period 1986-1996: (0) PCR with DynRout; (1) using a FM 2D flexible mesh forced with PCR output and (2) as in (1) but discriminating between 1D channels and 2D floodplains, and, for comparison, (3) and (4) the same set-ups as (1) and (2) but forced with observed GRDC discharge values. Outputs are subsequently validated against observed GRDC data at Óbidos and flood extent maps from the Dartmouth Flood Observatory.

The present research constitutes a first step into a globally applicable approach to fully couple hydrologic with hydrodynamic computations while discriminating between 1D-channels and 2D-floodplains. Such a fully-fledged set-up would be able to provide higher-order flood hazard information, e.g. time to flooding and flood duration, ultimately leading to improved flood risk assessment and management at the large scale.