H43J-03
Towards a generalized catchment flood processes simulation system with distributed hydrological model

Thursday, 17 December 2015: 14:10
3020 (Moscone West)
Yangbo Chen, Sun Yat-Sen University, Department of Water Resources and Environment, Guangzhou, China
Abstract:
High resolution distributed hydrological model is regarded as to have the potential to finely simulate the catchment hydrological processes, but challenges still exist. This paper, presented a generalized catchment flood processes simulation system with Liuxihe Model, a physically-based distributed hydrological model proposed mainly for catchment flood forecasting, which is a process-based hydrological model. In this system, several cutting edge technologies have been employed, such as the supercomputing technology, PSO algorithm for parameter optimization, cloud computation, GIS and software engineering, and it is deployed on a high performance computer with free public accesses. The model structure setting up data used in this system is the open access database, so it could be used for catchments world widely. With the application of parallel computation algorithm, the model spatial resolution could be as fine as up to 100 m grid, while maintaining high computation efficiency, and could be used in large scale catchments. With the utilization of parameter optimization method, the model performance cold be improved largely. The flood events of several catchments in southern China with different drainage sizes have been simulated by this system, and the results show that this system has strong capability in simulating catchment flood events even in large river basins.