NH53A-04
Informing Urban Decision Making with an Array of Things
Friday, 18 December 2015: 14:25
309 (Moscone South)
Robert L Jacob, University of Chicago, Computation Institute, Chicago, IL, United States; Argonne National Laboratory, Argonne, IL, United States
Abstract:
Over the next several decades, the population of the world’s cities is projected to nearly double, increasing by 2.6 billion people and requiring massive urban expansion globally. This massive growth in urban density and scale will compound ongoing city challenges related to climate change, energy, infrastructure, public health, and more. Cities are using data they already collect such as 311 calls, bus and train operations, street repair orders, census data and building permits to help understand the complex interactions between the human, built and natural systems within a city and inform their decision making. Helping to guide urban decision-making is The Array of Things (AoT): a new tool for measuring many aspects of the physical environment of urban areas at the city block scale with continuous, reliable, integrated data from a variety of sensors. An AoT node includes multiple sensors to measure basic meteorological quantities such as pressure, temperature and humidity as well as light and trace gases such as carbon monoxide, nitrogen dioxide, sulfur dioxide and ozone. The sensors operate 24/7 with ingest frequencies as high as 1Hz. The nodes are modular and allow new sensors to be added or swapped out. The hardware/software backbone of an AoT node is provided by the Waggle architecture. Each AoT node includes, via Waggle, compute power from a single board computer running Linux that allows data to be processed in-situ and, if needed, command and control of components of the node. Data is communicated in near real-time typically through WiFi, 3G or wired ethernet to a designated host and resilience is built-in to prevent data loss if communication is disrupted. The AoT includes a software stack with a programmable API and cloud-based infrastructure for performing data ingest and further analysis. The first full instance of AoT will comprise 500 nodes deployed in the City of Chicago, each with power, Internet, and a base set of sensing and embedded information systems capabilities. A prototype of the Array of Things consisting of 12 nodes has been deployed on the campus of the University of Chicago and initial data from the array will be presented.