A41R-08
Future land-use change emissions: CO2, BVOC and wildfire

Thursday, 17 December 2015: 09:45
3008 (Moscone West)
Almut Arneth1, Wolfgang Knorr2, Stijn Hantson1, Peter Anthoni1 and Sebastian Szogs1, (1)Karlsruhe Institute of Technology, Karlsruhe, Germany, (2)Lund University, Lund, Sweden
Abstract:
Historical land-use (LUC) change is known to have been a large source of CO2 emissions, mostly from deforestation: the equivalent of around 1/3 of today’s CO2 in the atmosphere arises from LUC. And LUC will continue into the future, although the expected area change, the type of LUC (deforestation vs. afforestation/reforestation) and regions where the LUC will take place will differ greatly, depending on the future scenario. But LUC is not only of importance for projecting emissions of CO2. It also affects greatly emissions of biogenic volatile organic carbon, and from wildfires – all of which are important for the quantification of precursor substances relevant to air quality, and interactions with climate change.

We show here that accounting for future socio-economic developments and LUC scenarios has the potential to override climate change and effects of CO2 fertilisation on fire and BVOC emission, regionally and in some cases also globally. Simulation experiments with the dynamic global vegetation model LPJ-GUESS will be performed, covering the 20th and 21st century, and assessing a rage of future population growth, LUC and climate change scenarios. For wildfire emissions, we find that burned area and emissions depend greatly on the type of population growth scenario, and on the distribution of urban vs rural population. BVOC emissions depend greatly on the amount and location of deforestation vs the region and magnitude of forest expansion in response to warming, such as through expansion of vegetation in the northern hemisphere, and via reforestation/afforestation. LUC so far has not been given sufficient attention for simulations of future air quality-climate interactions. In terms of terrestrial precursor emissions of atmospherically reactive substances our simulations clearly demonstrate the importance of including LUC in combination with vegetation that responds dynamically to changes in climate and atmospheric CO2 levels.