S13B-2845
Tracking Down the Causes of Recent Induced and Natural Intraplate Earthquakes with 3D Seismological Analyses in Northwest Germany

Monday, 14 December 2015
Poster Hall (Moscone South)
Philipp Uta1, Christian Brandes1, Christian Boennemann2, Thomas Plenefisch2 and Jutta Winsemann1, (1)Leibniz University of Hannover, Hannover, Germany, (2)BGR Federal Institute for Geosciences and Natural Resources, Hannover, Germany
Abstract:
Northwest Germany is a typical low strain intraplate region with a low seismic activity. Nevertheless, 58 well documented earthquakes with magnitudes of 0.5 - 4.3 affected the area in the last 40 years. Most of the epicenters were located in the vicinity of active natural gas fields and some inside. Accordingly, the earthquakes were interpreted as a consequence of hydrocarbon recovery (e.g. Dahm et al. 2007, Bischoff et al. 2013) and classified as induced events in the bulletins of the Federal Institute for Geosciences and Natural Resources (BGR). The two major ones have magnitudes of 4.3 and 4.0. They are the strongest earthquakes ever recorded in Northern Germany. Consequently, these events raise the question whether the ongoing extraction itself can cause them or if other natural tectonic processes like glacial isostatic adjustment may considerably contribute to their initiation. Recent studies of Brandes et al. (2012) imply that lithospheric stress changes due to post glacial isostatic adjustment might be also a potential natural cause for earthquakes in Central Europe.

In order to better analyse the earthquakes and to test this latter hypothesis we performed a relocalization of the events with the NonLinLoc (Lomax et al. 2000) program package and two differently scaled 3D P-wave velocity models. Depending on the station coverage for a distinct event, either a fine gridded local model (88 x 73 x 15 km, WEG-model, made available by the industry) or a coarse regional model (1600 x 1600 x 45 km, data from CRUST1.0, Laske et al. 2013) and for some cases a combination of both models was used for the relocalization. The results confirm the trend of the older routine analysis: The majority of the events are located at the margins of the natural gas fields, some of them are now located closer to them. Focal depths mostly vary between 3.5 km and 10 km. However, for some of the events, especially for the older events with relatively bad station coverage, the error bars for the focal depth are large. To prevent uncertainties in focal depths and focal mechanisms we generate synthetic seismograms depending on the reflectivity method to get a more precise position of the hypocenters. For hypocenters deeper than 10 km we speculate that these events might be potential natural earthquakes.