S13B-2846
Improving Correlation Algorithms to Detect and Characterize Smaller Magnitude Induced Seismicity Swarms 

Monday, 14 December 2015
Poster Hall (Moscone South)
Robert Skoumal, Michael Brudzinski and Brian Currie, Miami University, Oxford, OH, United States
Abstract:
Induced seismic sequences often occur as swarms that can include thousands of small (< M 2) earthquakes. While the identification of this microseismicity would invariably aid in the characterization and modeling of induced sequences, traditional earthquake detection techniques often provide incomplete catalogs, even when local networks are deployed. Because induced sequences often include scores of micro-earthquakes that prelude larger magnitude events, the identification of these small magnitude events would be crucial for the early identification of induced sequences. By taking advantage of the repeating, swarm-like nature of induced seismicity, a more robust catalog can be created using complementary correlation algorithms in near real-time without the reliance on traditional earthquake detection and association routines. Since traditional earthquake catalog methodologies using regional networks have a relatively high detection threshold (M 2+), we have sought to develop correlation routines that can detect smaller magnitude sequences. While short-term/long-term amplitude average detection algorithms requires significant signal-to-noise ratio at multiple stations for confident identification, a correlation detector is capable of identifying earthquakes with high confidence using just a single station. The result is an embarrassingly parallel task that can be employed for a network to be used as an early warning system for potentially induced seismicity while also better characterizing tectonic sequences beyond what traditional methods allow.