H13N-01
Beauty and the beast: Some perspectives on efficient model analysis, surrogate models, and the future of modeling
Abstract:
For many environmental systems model runtimes have remained very long as more capable computers have been used to add more processes and more time and space discretization. Scientists have also added more parameters and kinds of observations, and many model runs are needed to explore the models. Computational demand equals run time multiplied by number of model runs divided by parallelization opportunities. Model exploration is conducted using sensitivity analysis, optimization, and uncertainty quantification. Sensitivity analysis is used to reveal consequences of what may be very complex simulated relations, optimization is used to identify parameter values that fit the data best, or at least better, and uncertainty quantification is used to evaluate the precision of simulated results. The long execution times make such analyses a challenge. Methods for addressing this challenges include computationally frugal analysis of the demanding original model and a number of ingenious surrogate modeling methods. Both commonly use about 50-100 runs of the demanding original model.In this talk we consider the tradeoffs between (1) original model development decisions, (2) computationally frugal analysis of the original model, and (3) using many model runs of the fast surrogate model. Some questions of interest are as follows. If the added processes and discretization invested in (1) are compared with the restrictions and approximations in model analysis produced by long model execution times, is there a net benefit related of the goals of the model? Are there changes to the numerical methods that could reduce the computational demands while giving up less fidelity than is compromised by using computationally frugal methods or surrogate models for model analysis? Both the computationally frugal methods and surrogate models require that the solution of interest be a smooth function of the parameters or interest. How does the information obtained from the local methods typical of (2) and the global averaged methods typical of (3) compare for typical systems? The discussion will use examples of response of the Greenland glacier to global warming and surface and groundwater modeling.