H21G-1477
Humic substances-mediated microbial reductive dehalogenation of triclosan
Tuesday, 15 December 2015
Poster Hall (Moscone South)
Lin Wang, University of Nevada, Reno, Reno, NV, United States, Shengnan Xu, University of Nevada Reno, Reno, NV, United States and Yu Yang, University of Notre Dame, South Bend, IN, United States
Abstract:
The role of natural organic matter in regulating the redox reactions as an electron shuttle has received lots of attention, because it can significantly affect the environmental degradation of contaminants and biogeochemical cycles of major elements. However, up to date, limited studies examined the role of natural organic matter in affecting the microbial dehalogenation of emergent organohalides, a critical detoxification process. In this study, we investigated the humic substance (HS)-mediated microbial dehalogenation of triclosan, a widely used antimicrobial agent. We found that the presence of HS stimulated the microbial degradation of triclosan by Shewanella putrefaciens CN-32. In the absence of HS, the triclosan was degraded gradually, achieving 8.6% residual at 8 days. With HS, the residual triclosan was below 2% after 4 days. Cl- was confirmed by ion chromatography analysis, but the dehalogenation processes and other byproducts warrant further investigations. The impact of HS on the degradation of triclosan was highly dependent on the concentration of HS. When the HS was below 15 mg/L, the degradation rate constant for triclosan increased with the organic carbon concentration. Beyond that point, the increased organic carbon concentration decreased the degradation of triclosan. Microbially pre-reduced HS abiotically reduced triclosan, testifying the electron shuttling processes. These results indicate that dissolved organic matter plays a dual role in regulating the degradation of triclosan: it mediates electron transport and inhibits the bioavailability through complexation. Such novel organic matter-mediated reactions for organohalides are important for evaluating the natural attenuation of emergent contaminants and designing cost-effective engineering treatment.