H21G-1478
Effect of Clay Nanoparticle Transport, Desorption Kinetics and Redox Equilibrium on Radionuclide Mobility in Fractured Rock investigated at the Grimsel Test Site (Switzerland)
Tuesday, 15 December 2015
Poster Hall (Moscone South)
Thorsten Schaefer, Karlsruhe Institute of Technology, Karlsruhe, Germany
Abstract:
Transport of contaminants in crystalline environments might occur through dissolved species or attached to colloidal or nanoparticulate phases being mobile in water conducting features of the host rock. In this presentation we will discuss the mobility of clay nanoparticles as detected by laser-induced breakdown detection (LIBD) as a function of fracture surface roughness and groundwater chemistry. The on site observed Tc-99, U-233, Np-237, Pu-242 and Am-243 sorption/desorption kinetics with and without natural or synthetic clay minerals (smectites) are compared to laboratory studies under similar groundwater conditions. The desorption or redox kinetics were monitored over a duration of up to 426 days using natural fracture filling material as a concurrence ligand and monitoring the colloid attachment via detection of Al, Si, Ni and Zn as smectite structural elements. For trivalent actinides smectite desorption rates in the range of 1.2-3.7E-3 per hour could be determined and significantly lower desorption rates for tetravalent actinides were found. This results will be compared with field data of migration experiments performed at the Grimsel Test Site (GTS, Switzerland) using the same radionuclides and clay colloidal phases varying the fracture residence time by flow rate adjustment. Furthermore, the long-term actinide mobility will be addressed by presenting AMS/RIMS measurements of (a) samples collected several months into the tailing of the breakthrough curves not any longer detectable by HR-ICP-MS and (b) background samples of different GTS ground waters showing fallout U-236, whereas fallout Pu could not be detected indicating a much lower mobility under the given conditions.