T51E-2936
Receiver function and magnetotelluric analysis to understand the first stage of a continental lithospheric break-up : case of the North Tanzanian Rift
Abstract:
First stage of continental break-up, though intensively studied, is yet poorly understood. This is partly because actual rifting areas are either too mature (more than 10 My) or not easily accessible (thick sediment cover or under water). The North Tanzania part of the East African Rift is the place of a lithosphere's early break-up (less than 5My) in response to a combination of regional pulling forces and mantle upwelling. Deformation there results from complex interactions between magmatic intrusions, faulting, asthenospheric dynamics and far field stresses. CoLiBrEA (ANR) and CRAFTI (NSF) are two multidisciplinary projects which collaboratively focus on this area to understand the interactions between faults and magma, the role of inherited structures and rheological heterogeneities of the lithosphere.For that purpose, we deployed 38 broadband seismic stations in the Natron and Ngorongoro areas from January 2013 to December 2014 and carried out a 120 km East-West magnetotelluric (MT) profile to image the crustal and mantle structures. The 3D resistivity model, obtained from the inversion of the MT data along the profile, shows an highly heterogeneous crust with three-dimensional structures over a more homogeneous upper mantle. The first inversion result from the receiver function (RF) by the Zhu and Kanamori's inversion method show a thick crust (~35 km) with important variations (maximum 15km) especially in the Ngorongoro area, and an average Vp/Vs ratio of 1.75. We then completed this study by combining the MT data and the RF at the 11 sites of the EW profile. For each site, we built a 1D velocity model (Vs and VpVs) obtained by combining the Sambridge forward solution with a non linear descent research algorithm and constrained by the resistivity structure. The inversion shows an heterogeneous crust obviously dominated by the Moho interface at different depths, with low velocity layers mainly corresponding to low resistivity features.