The Central Lake Malawi (Nyasa) Rift: single or multiple rift segments?

Friday, 18 December 2015
Poster Hall (Moscone South)
Tannis McCartney1, Christopher A Scholz1, Donna J Shillington2, Natalie J Accardo2, Patrick R.N. Chindandali3 and Godson Kamihanda4, (1)Syracuse University, Syracuse, NY, United States, (2)Columbia University of New York, Palisades, NY, United States, (3)Geological Survey of Malawi, Zomba, Malawi, (4)Geological Survey of Tanzania, Dodoma, Tanzania
Accommodation zones connect rift segments, which are fundamental elements of continental rift architecture. The sedimentary record aids our assessment of the evolution of this linkage. The central basin of Lake Malawi is one of the most structurally complex regions of the Malawi Rift. Border fault margins have been interpreted on both shorelines; three structures within the basin have been interpreted as segments of a corresponding accommodation zone. We investigate these structures by integrating single- and multi-channel reflection seismic data, including new MCS acquired in 2015 for the SEGMeNT project. The stratigraphic record in the central basin, inferred from seismic reflection profiles, provides compelling evidence that most fault-related subsidence is accommodated by the western border fault. Strata on both sides of all three structures dip to the west. The pre-rift basement in the sub-basin west of the central structure is considerably deeper (~ 4 s TWTT sub-bottom) than that in the broader eastern sub-basin (~ 2.5 s TWTT sub-bottom). A syncline in the eastern sub-basin shows little variation in seismic facies, particularly over the last 1.3 m.y. In contrast, the western sub-basin exhibits seismic facies indicative of fluvial input from two major rivers, siliciclastic input from the border fault footwall rising > 1000 m above lake level, and mud diapirs in the deepest part of the sub-basin. Horizons pierced by these diapirs onlap the central structure, suggesting diapir rise postdates relative uplift of the structure. Correlations with the age model from a 2005 scientific drilling project will better constrain this timing. The structural high helps focus siliciclastic sediments into the sub-basin, resulting in the overpressure conditions required for mud diapirism. We hypothesize that the diapirs are the result of sediment loading in the deep main depocenter of the central basin rather than fault mechanisms. The basement highs in the central basin control sediment distribution but are not accommodation zones sensu stricto.