DI31A-2562
Sulfide Composition and Melt Stability Field in the Earth’s Upper Mantle
Wednesday, 16 December 2015
Poster Hall (Moscone South)
Zhou Zhang, University of Minnesota Twin Cities, Minneapolis, MN, United States and Marc M Hirschmann, Univ Minnesota, Minneapolis, MN, United States
Abstract:
In the Earth’s upper mantle, sulfur occurs chiefly as (Fe, Ni)xS minerals and melts with near-monosulfide stoichiometries. These could have substantial influence on geochemical and geophysical properties of the Earth’s interior. For example, sulfide mineral and melts are the major carriers of chalcophile and platinum group elements (PGEs) and sulfide melts are potentially responsible for mantle geophysical anomalies, as their physical properties (higher density, surface tension, electrical conductivity and lower melting points) differ greatly from those of silicates. Sulfide melts are a potential sink for reduced mantle carbon and perhaps be associated with carbon transport, including diamond precipitation. Sulfides may be molten in large parts of the mantle, but this is determined in part by sulfide composition, which is in turn a product of Fe-Ni exchange with olivine and of the effect of sulfur, oxygen, and carbon fugacities on metal/anion ratios of melts. Melting experiments define the monosulfide (Fe0.35Ni0.12Cu0.01S0.52) solidus from 1-8 GPa at carbon-free and graphite saturated conditions. The resulting carbon-free solidus is below the mantle adiabat to depths of at least 300 km, but does not indicate sulfide melting in continental lithosphere. In contrast, the graphite saturated solidus indicates melting in the lithosphere at 6-7 GPa (~200 km), close to the source conditions typical of diamond formation. To determine the composition of sulfide equilibrated with olivine, we performed experiments on monosulfide-olivine (crushed powders from San Carlos single crystal) under 2 GPa, 1400 ◦C. Our preliminary results suggests that Fe-Ni distribution coefficients KD, defined by (Ni/Fe)sulfide/(Ni/Fe)olivine, have significantly lower values than those determined previously at one atmosphere (Doyle and Naldrett 1987; Fleet and MacRae 1987; Gaetani and Grove 1997). This indicates that sulfide equilibrated with olivine in the mantle is richer in Fe than former estimates, and consequently likely refractory. Together with future work on metal/sulfur ratio of sulfide, we will define the sulfide composition-depth profile and its corresponding melt stability field in different mantle redox/geotherm domains.