S51B-2669
Kinematic modeling the 2014 Mw6 South Napa, California, earthquake using near-fault strong-motion data and 3D Green’s functions

Friday, 18 December 2015
Poster Hall (Moscone South)
Frantisek Gallovic, Charles University, Faculty of Math. and Phys., Dept. of Geophysics, Prague, Czech Republic and Walter Imperatori, ETH Swiss Federal Institute of Technology, Zurich, Swiss Seismological Service, Zurich, Switzerland
Abstract:
On 24 August 2014 an Mw 6.1 earthquake struck the Napa area in the north San Francisco Bay region. We perform slip inversion using method by Gallovič et al. (2015), employing low frequency data (0.05-0.5 Hz) recorded by 10 near-fault strong-motion stations and a 1D velocity model (GIL7). We reveal rupture propagating up-dip and unilaterally along the fault with dominant shallow asperity. While the fit of the data is good in terms of the first main pulses, the observed weaker secondary arrivals at some of the stations remain unexplained. We then perform forward simulation combining the revealed ‘1D’ source model and detailed 3D USGS velocity model of the Bay region. While the 3D crustal model slightly improves the fit at stations located outside of major basin structures, it introduces strong spurious reverberations at stations inside the basins. These strong oscillations disappear when the 3D velocity model is smoothed. We also perform slip inversion using 3D Green’s functions, obtaining a source model that effectively suppresses the oscillations, but also worsens the fit at stations outside the basins. Compared to the ‘1D’ rupture model, the ‘3D’ rupture model has longer rise times and lower peak slip rates, but it also contains more spurious features. Thus we conclude that the ‘1D’ rupture model is more robust, suggesting that the 3D USGS velocity model for the Bay area should be improved in some of its parts.

As a next step, based on the low-resolution slip models, we follow the approach of Ruiz (Ruiz et al., 2011) to build broadband kinematic source models to simulate deterministically ground motions up to 5Hz, including topography, intrinsic attenuation and random small-scale velocity heterogeneity. Calculations show an extremely complex wave field in comparison with 1D simulations. Finally, we check how our deterministic synthetics compare with those obtained using popular broadband hybrid techniques (e.g., Mai et al., 2010).